
165

A Study of Inline Assembly in Solidity Smart Contracts
STEFANOS CHALIASOS, Imperial College London, United Kingdom
ARTHUR GERVAIS, Imperial College London, United Kingdom
BENJAMIN LIVSHITS, Imperial College London, United Kingdom

The Solidity programming language is the most widely used language for smart contract development.
Improving smart contracts’ correctness, security, and performance has been the driving force for research
in vulnerability detection, program analysis, and compiler techniques for Solidity. Similar to system-level
languages such as C, Solidity enables the embedding of low-level code in programs, in the form of inline
assembly code. Developers use inline assembly for low-level optimizations, extending the Solidity language
through libraries, and using blockchain-specific opcodes only available through inline assembly. Nevertheless,
inline assembly fragments are not well understood by an average developer and can introduce security threats
as well as affect the optimizations that can be applied to programs by the compiler; it also significantly limits
the effectiveness of source code static analyzers that operate on the Solidity level. A better understanding
of how inline assembly is used in practice could in turn increase the performance, security, and support for
inline assembly in Solidity.

This paper presents a large-scale quantitative study of the use of inline assembly in 6.8𝑀 smart contracts
deployed on the Ethereum blockchain. We find that 23% of the analyzed smart contracts contain inline assembly
code, and that the use of inline assembly has become more widespread over time. We further performed
a manual qualitative analysis for identifying usage patterns of inline assembly in Solidity smart contracts.
Our findings are intended to help practitioners understand when they should use inline assembly and guide
developers of Solidity tools in prioritizing which parts of inline assembly to implement first. Finally, the
insights of this study could be used to enhance the Solidity language, improve the Solidity compiler, and to
open up new research directions by driving future researchers to build appropriate methods and techniques
for replacing inline assembly in Solidity programs when there is no real necessity to use it.
CCS Concepts: • General and reference → Empirical studies; • Software and its engineering → As-
sembly languages; Language features.
Additional Key Words and Phrases: Solidity, Smart Contracts, Inline Assembly, Empirical Studies
ACM Reference Format:
Stefanos Chaliasos, Arthur Gervais, and Benjamin Livshits. 2022. A Study of Inline Assembly in Solidity Smart
Contracts. Proc. ACM Program. Lang. 6, OOPSLA2, Article 165 (October 2022), 27 pages. https://doi.org/10.
1145/3563328

1 INTRODUCTION
Many programming languages provide inline assembly capabilities, i.e., assembly instructions
embedded in a higher-level language. For example, in C, one can use x86-64 inline assembly to
access low-level assembly instructions (e.g., rdtsc instruction to read a timer). The presence of inline
assembly in a language enables low-level programming, extending the language’s functionality, and
gives developers fine-grained control for performing specialized optimizations. Nevertheless, inline
Authors’ addresses: Stefanos Chaliasos, Imperial College London, United Kingdom, s.chaliasos21@imperial.ac.uk; Arthur
Gervais, Imperial College London, United Kingdom, arthur@gervais.cc; Benjamin Livshits, Imperial College London, United
Kingdom, b.livshits@imperial.ac.uk.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2022 Copyright held by the owner/author(s).
2475-1421/2022/10-ART165
https://doi.org/10.1145/3563328

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 165. Publication date: October 2022.

https://doi.org/10.1145/3563328
https://doi.org/10.1145/3563328
https://doi.org/10.1145/3563328

165:2 Stefanos Chaliasos, Arthur Gervais, and Benjamin Livshits

assembly thwarts the effectiveness of static analyzers and compilers (e.g., it reduces optimization
opportunities). Rigger et al. [2018] investigated the impact and usage of inline assembly in C
projects and discovered that, inline assembly is utilized by a sizable number of projects (15.6%) and,
as such, tools should add support for it.
In Solidity, the primary programming language for implementing smart contracts for the

Ethereum blockchain, one can interleave Solidity statements with inline assembly in a language
close to the bytecode syntax of the Ethereum virtual machine. The primary motivation for en-
abling inline assembly statements in Solidity, is to provide developers more fine-grained control,
which is especially useful when trying to enhance the language by writing libraries and per-
forming specialized optimizations. The latter is especially critical in EVM-based blockchains (e.g.,
Ethereum), because most applications try to minimize gas costs (gas refers to the cost necessary to
run instructions in EVM-based blockchains).
However, because smart contracts handle billions of USD, the risks of using inline assembly

in Solidity can be daunting. Similar to other languages, inline assembly is inherently low-level
in Solidity, and as such, it bypasses several essential safety features and checks provided by the
language and the compiler. When using inline assembly, it is the developer’s responsibility to
ensure that the memory model is satisfied. If any assumption of the memory model is violated, it
can lead to incorrect or undefined behavior that cannot easily be discovered by testing. Additionally,
the compiler cannot generally perform optimizations when employing inline assembly because
it cannot reason about the memory. Surprisingly, static analysis tools that operate on the source
code of Solidity smart contracts (e.g., slither [Feist et al. 2019], Securify2 [Tsankov et al. 2018], and
SmartCheck [Tikhomirov et al. 2018]), and not on the EVM-bytecode [Brent et al. 2020, 2018; Grech
et al. 2018], only partially support inline assembly fragments (they typically just print a warning),
which can lead to imprecise analyses.

In this work, we perform the first quantitative and qualitative study of the usage of inline
assembly in Solidity smart contracts. Specifically, we aim to investigate how widespread the use of
inline assembly in smart contracts is, why developers employ it, and obtain insights that would
help (1) practitioners to understand when they should use inline assembly, (2) researchers and tool
writers to design and implement approaches that would be able to analyze inline assembly, and (3)
language designers and compiler developers to enhance Solidity and its compiler support of inline
assembly. To this end, our study seeks answers to the following research questions.
RQ1 (Measuring Inline Assembly) How common is inline assembly in Solidity programs? How

extensively do contracts that contain inline assembly use it? (Section 4.1)
RQ2 (Smart Contract Characteristics) What are the characteristics of contracts that use inline

assembly? Do they differ from other contracts? (Section 4.2)
RQ3 (Evolution of Inline Assembly) How does the usage of inline assembly evolve through

time? What is the percentage of contracts using inline assembly per compiler version?
(Section 4.3)

RQ4 (A Taxonomy of Inline Assembly)What are the most frequently-used instructions?Which
instructions are combined in frequently repeating fragments? (Section 4.4)

RQ5 (Usage of Inline Assembly)Why do developers use inline assembly in practice? What kind
of functionalities do they employ inline assembly for? (Section 5)

To answer these questions, we compose a dataset of Solidity smart contracts deployed in the
Ethereum blockchain with at least one transaction or token transfer recorded. We also gather
additional metadata for each address containing a contract to perform holistic analyses. Our corpus
comprises 12.4M contracts, of which 159.2𝐾 are unique contracts (i.e., there might be multiple
deployments of the same contract). Starting with a large dataset, we then performed quantitative

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 165. Publication date: October 2022.

A Study of Inline Assembly in Solidity Smart Contracts 165:3

analyses to answer our first four research questions. Then, we selected 170 unique inline assembly
fragments from five different clusters, and we manually studied them to answer our last research
question.

Contributions. Our work makes the following contributions:
• We present a method for collecting and assessing inline-assembly code fragments from Solidity
smart contracts deployed in Ethereum. We also make available, to the best of our knowledge, the
largest dataset of Solidity smart contracts containing 12.4M contracts.

• We provide a thorough study of the usage of inline assembly in real-world Solidity smart contracts.
Our analysis measures inline assembly in smart contracts, studies the characteristics of contracts
that use inline assembly, studies the evolution of inline assembly through time, and provides a
taxonomy of inline assembly usage.

• Bymanually examining 170 inline assembly fragments, we introduce ten classes of inline assembly
usage patterns in smart contracts.

• We enumerate the implications of our findings and discuss potential future directions for replacing
inline assembly in smart contracts, as well as improving inline assembly support in source code
analysis tools.
Summary of finding. Selected, representative findings of our study are: (1) 23% of smart

contracts in our corpus use inline assembly, (2) contracts using inline assembly typically only
include two fragments (2.08 on average) and 10.62 instructions, (3) contracts that contain assembly
are larger than those that do not (161 vs. 40 lines of code) and have more transactions, (4) the
percentage of contracts using inline assembly increases through time, (5) 48 out of the 85 available
instructions are used by less than 1% of the contracts that employ inline assembly, (6) an inline
assembly fragment typically uses instructions from at least three different instruction categories (e.g.,
arithmetic operations and system operations), (7) inline assembly is mainly used for implementing
functionality not available in Solidity as well as for gas optimization using specific code patterns.

Availability The research artifact is available at https://github.com/StefanosChaliasos/solidity-
inline-assembly [Chaliasos et al. 2022].

2 BACKGROUND
This section provides a short introduction to Ethereum, Ethereum Virtual Machine (EVM), and
Solidity, the foremost programming language for writing smart contracts; lastly, we discuss inline
assembly in Solidity smart contracts.

2.1 Ethereum, EVM and Solidity
A blockchain implements a distributed ledger that records transactions between parties in a
verifiable way into blocks. New transactions are processed by connected nodes that add those
transactions in blocks, and then cooperate in appending blocks into the blockchain through a
consensus protocol [Nakamoto 2008]. Ethereum [Wood 2022] is the most prominent blockchain
with smart contract capabilities [Szabo 1997]. In Ethereum, beyond accounts that are mere balances,
there are specialized accounts containing balances, volatile and non-volatile storage, and code that
can perform arbitrary computations. Ethereum smart contracts are written in EVM, a stack-based
bytecode language, and are executed in Ethereum distributed virtual machine. Smart contracts are
initialized and executed through transactions and remain immutable once deployed.
EVM is a quasi Turing-complete, stack-based, low-level intermediate representation (IR). EVM

defines several opcodes, which perform standard stack operations like XOR, AND, ADD, and SUB.
Additionally, the EVM also implements a number of blockchain-specific stack operations, such as
ADDRESS, BALANCE, and BLOCKHASH. Ethereum applies an execution cost (gas) per opcode to prevent

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 165. Publication date: October 2022.

https://github.com/StefanosChaliasos/solidity-inline-assembly
https://github.com/StefanosChaliasos/solidity-inline-assembly

165:4 Stefanos Chaliasos, Arthur Gervais, and Benjamin Livshits

adversarial actors from spamming its network. Practitioners usually prefer to write smart contracts
in high-level languages, which are then compiled into the targeted low-level VM bytecode. The most
prominent contract-oriented programming language for Ethereum is Solidity, a high-level language
whose definition was influenced by Object-Oriented (OO) languages like Python, C++, and primarily
JavaScript. Solidity is statically typed, supports inheritance, libraries, and complex user-defined
types, among other features. Using Solidity, it is possible to write contracts for implementing
Tokens (e.g., ERC-20), Decentralized Applications (dapp) such as Decentralized Exchanges (DEX),
multi-signature wallets, and more.

2.2 Inline Assembly in Solidity
Inline assembly (typically introduced by a language-specific keyword, e.g., asm for C and C++)
gives the ability to embed assembly language source code within a program written in a high-level
language. Rigger et al. [2018] investigates the use of x86-64 inline assembly in C projects from
GitHub and found that 15.6% of the analyzed projects contained inline assembly code. The majority
of assembly fragments are mainly concerned with multicore semantics, performance optimization,
and hardware control.

In Solidity, developers can embed inline assembly in a language close to the one of EVM called
YUL. 1 YUL is an intermediate language that can be compiled to bytecode for different backends
(e.g., EVM). The goal of YUL is to be readable while being a low-level language. The main difference
with other assembly dialects is that it provides high-level control flow constructs, i.e., if, switch,
and for. Hence, YUL does not support direct manipulation of the stack through DUP, SWAP, and
JUMP instructions making it less error-prone. Note that other opcodes can be called from within
YUL blocks as normal functions (e.g., add(x, y)). In the following, we will use the term instruction
to refer to opcode calls and other YUL constructs, such as the switch statement. Furthermore, YUL
is suitable for whole-program optimizations, and has been used by the Solidity compiler to perform
more advanced optimizations in its latest releases. 2

1 contract Example {

2 function add(uint a, uint b) public
view returns (uint) {

3 assembly {

4 let result := add(a, b)

5 mstore(0x0, result)

6 return(0x0, 32)

7 }

8 }

9 }

Fig. 1. A simple example of inline assembly
in Solidity.

According to Solidity’s documentation [Solidity 2022],
inline assembly should be used when more fine-grained
control is needed to implement libraries or perform oper-
ations not available on Solidity. Another use case might
be for optimizations purposes when Solidity’s optimizer
fails to produce efficient code. Nevertheless, inline assem-
bly is a way to access the Ethereum Virtual Machine at a
low level. Therefore, it bypasses several essential safety
features and checks of Solidity (e.g., memory safety) and
should be used only when required.
An inline assembly block is marked by assembly

{...}, where the code inside the curly braces is writ-
ten in the YUL language. Inline assembly code can access
local Solidity variables, while different inline assembly
blocks share no namespace, i.e., it is not possible to call a YUL function or access a YUL variable
defined in a different inline assembly block. Figure 1 presents a straightforward example where
two numbers are passed in a function, then added together using inline assembly, and finally, the
function returns the result. The program first calculates the sum of a and b using the add opcode,
and saves it in a new variable called result (line 4). Then, in line 5, it stores the result in memory at

1https://docs.soliditylang.org/en/latest/yul.html
2https://docs.soliditylang.org/en/latest/internals/optimizer.html

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 165. Publication date: October 2022.

https://docs.soliditylang.org/en/latest/yul.html
https://docs.soliditylang.org/en/latest/internals/optimizer.html

A Study of Inline Assembly in Solidity Smart Contracts 165:5

Metadata
Provider

Contract Addresses /
Metadata Collection

Contract
Metadata Custom Parser

Visitor

Quantitative Analysis

Inline Assembly
Analysis

Database

Sample
Selection Analysis

Categorisation

Iterative

Data Collection

Contract
Address

Quantitative
Results

SQL
Query Labels

Blockchain
Explorer

Source Code
Collection

Contract
Source Code

Post Filtering

Qualitative Analysis

Fig. 2. The overview of our dataset creation and inline assembly analysis approach.

the address 0x0. Finally, it returns 32 bytes from memory address 0x0, which includes the value of
the result variable. Although this is a very simple use of inline assembly, it is still more efficient than
the respective Solidity code. In Section 5, we discuss more advanced use cases of inline assembly.

3 METHODOLOGY
First, we create a corpus of Solidity smart contracts deployed on Ethereum for which we can retrieve
their source code (Section 3.1). Then, we present the implementation details of the quantitative
analysis (Section 3.2), and we proceed with the methodology we used to access inline assembly
usage qualitatively (Section 3.3). Note that the data collection and the quantitative analysis have
been implemented as an automated pipeline, while we perform the qualitative analysis by manually
examining inline assembly code fragments. Finally, we discuss the limitations and threats to the
validity of our method (Section 3.4).

Our data collection and analysis approach is summarized in Figure 2. As a starting point, we use
a blockchain metadata provider to collect Ethereum contract addresses. Then, we use a blockchain
explorer (e.g., Etherscan 3) to get the source code of smart contracts. In the next step (post-filtering),
we perform the necessary data cleaning, where we process the results of the previous step and
identify potentially duplicate smart contracts. The final outcome of this approach is a corpus
consisting of a set of Ethereum smart contract addresses, metadata about those addresses (e.g.,
number of transactions), and the source code of contracts when available.

The resulting dataset is used as the input to our quantitative analysis (Section 3.2). To perform the
quantitative analysis, we implemented a custom parser that identifies and analyzes inline assembly
fragments and saves the results to a database (using SQlite3) of inline assembly fragments. The
database contains information about each address, file, contract, inline assembly fragment, and
assembly instruction analyzed. We then use this database to perform aggregate queries, for example,
to determine how common is inline assembly in solidity contracts deployed on Ethereum. Note that
we also have automated the quantitative analysis of our approach, and it is as simple as writing a
SQL query to address potential new research questions.
The final step of our methodology is composed of the qualitative analysis. This analysis aims

to understand why developers adopt inline assembly in practice. First, we filter smart contracts
containing inline assembly using the database from the previous step to cluster smart contracts
based on their characteristics (e.g., number of transactions and most duplicated contracts). Then we

3https://etherscanio.io

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 165. Publication date: October 2022.

https://etherscanio.io

165:6 Stefanos Chaliasos, Arthur Gervais, and Benjamin Livshits

qualitatively analyze the inline assembly usage in iterations. Specifically, we first select a random
sample of inline assembly fragments from all clusters, and then we manually study those fragments
to identify use cases of inline assembly.

3.1 Data Collection
Our data collection approach consists of three steps, namely, contract addresses and metadata
collection, source code collection, and post-filtering. To begin, we query Google Big Query (similar
to Durieux et al. [2020]) to get the addresses of contracts deployed on Ethereum and retrieve
specific metadata. Our study excludes contracts that have never been used, i.e., they have not any
transaction or token transfer. Furthermore, for each contract address, we gather the following
metadata: “transactions count”, “unique callers”, “token transfers count”, “balance”, “is erc20”, “is
erc721”, and “block number”.
After accumulating all the contract addresses, we proceed to the source code collection step. In

this step, we use Etherscan and its API to retrieve the source code associated with an address.
Specifically, Etherscan provides a source code verification feature, allowing users to upload the
source code of a deployed smart contract, and then Etherscan compiles it and matches it with the
code deployed on the blockchain. Note, however, that Etherscan does not have the source code
for every contract. Therefore, at the end of this step, we obtained the Solidity files for each smart
contract that has its source code available and verified in the Etherscan platform.
In the post-filtering step, having kept contract addresses and their source code when available,

we proceed to (1) parse the output of Etherscan and save each Solidity contract in a single file in the
filesystem, 4 and (2) detect possible duplicates. Although for answering most quantitative research
questions, we are not going to filter out duplicate smart contracts, in the qualitative analysis, we
want to filter them out to select unique code fragments more easily. To detect duplicates, we first
remove all spaces and tabulations from contracts, and then compare their SHA256 checksums.
Finally, to reduce the processing time of the next steps of our approach, we filter projects using
grep to detect if they contain the assembly keyword. Note that this approach would introduce
false positives as the assembly keyword may exist only in comments. Nevertheless, the parser we
implement (c.f. Section 3.2) can handle such false positives.

Figure 3 shows descriptive statistics of our data collection effort. We applied our approach from
block 47, 205 (7th of August, 2015) to block 14, 339, 876 (7th of March, 2022), a span of six years
and four months. During this period, 49M smart contracts have been deployed, and 12.4M have at
least one transaction or token transfer (25%). Furthermore, of these 12.4M, the 6.8𝑀 have verified
source code uploaded in Etherscan, compromising of 722.6𝑀 lines of code. Finally, only 2% of the
contracts are unique, meaning that 6.6𝑀 are duplicates.

3.2 Quantitative Analysis
The quantitative analysis phase of our approach is composed of three sub-steps: (1) analyzing
Solidity smart contracts using a customized parser, (2) feeding the results to a database, and (3)
executing queries to get quantitative results about inline assembly usage. First, we developed
a customized parser performing a lightweight static analysis that identifies and analyzes inline
assembly fragments. Our parser is implemented in Python (1.2K LOC), and is built on top of the
solidity_parser 5 Python module, which in turn utilizes ANTRL4 [Parr and Quong 1995] to
provide an abstract parser visitor for Solidity smart contracts. The customized parser processes

4Etherscan returns the result into JSONs. If a smart contract is compiled using multiple source files, Etherscan adds
everything to a single JSON, and thus requires special processing.
5https://github.com/ConsenSys/python-solidity-parser

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 165. Publication date: October 2022.

https://github.com/ConsenSys/python-solidity-parser

A Study of Inline Assembly in Solidity Smart Contracts 165:7

Start Block 47, 205 (7th of August, 2015)
End Block 14, 339, 876 (7th of March, 2022)
Total Contracts 49M
Contracts with at least one transaction 5.7M (12%)
Contracts with at least one token transfer 8.7M (18%)
Contracts without a transaction or token transfer 36.6M (75%)
Contracts with at least one transaction or token transfer 12.4M (25%)
Solidity source available 6.8𝑀 (55%)
Solidity source not available 5.6𝑀 (45%)
LOC 722.6𝑀
Unique Solidity Contracts 159.2𝐾 (2%)
LOC 55.8𝑀

Fig. 3. Statistics on the collection of Solidity smart contracts from the Ethereum blockhain.

inline assembly fragments to detect what opcodes and other YUL constructs each contract uses (i.e.,
control flow constructs). The output of our tool is a JSON containing details about smart contracts
and inline assembly fragments.
Having processed all smart contracts for which we have obtained their source code and may

contain inline assembly, the next step in our approach is to feed the data to a database. The database
schema consists of the following tables: “NonAssemblyContractAddress”, “AssemblyContractAd-
dress”, “Label”, “AddressLabel”, “SolidityFile”, “Contract” (here, we refer to contracts as we would
refer to classes in Java), “InlineAssemblyFragment”, “Instruction”, and “InstructionsPerFragment”. 6
To populate the database, we use three data sources: the output of our parser, the metadata of
contract addresses, and some external labels about Ethereum addresses.
The final step of the quantitative analysis is to answer all research questions of our study that

can be answered quantitatively. To do so, we craft SQL queries that use our database and retrieve
the data we need. The outcome of the quantitative analysis part is double-fold: first, we produce a
database with thorough information about inline assembly in Solidity smart contracts, and secondly,
we answer the quantitative research questions.

3.3 Qualitative Analysis
The smart contracts (deployed on the Ethereum blockchain) with at least one inline assembly
fragment are 1.5𝑀 containing 5388 unique inline assembly fragments. Since we needed to analyze
inline assembly fragments manually, it was not feasible to study every contract and fragment in
the population. Therefore, we first cluster contracts based on their metadata to get samples from
a broad spectrum. This way, we do not select contracts with only specific characteristics (e.g.,
a high number of transactions). Specifically, we carefully examined 170 unique inline assembly
fragments to understand better why developers adopt inline assembly in practice. First, we selected
the 70 most-deployed fragments, which account for 90% of all assembly usage in our corpus. Then,
to create a more representative and comprehensive collection of fragments, we picked 100 more
fragments from various clusters. We looked at 25 more fragments from each of the following four
categories: (1) fragments from contracts with the most transactions, (2) fragments from contracts
with the most unique callers, (3) fragments from the most duplicated contracts, and (4) 25 random
fragments. To better understand the nature of the examined inline assembly fragments, cover a
wide range of use cases, and reduce the possibility of getting biased, we chose to uniformly study
fragments from the clusters rather than do it iteratively (i.e., first study all the fragments of one
cluster and then continue with the fragments of the next cluster). Specifically, we randomly picked

6We refer the interested reader to our artifact for a complete description of the database schema (https://github.com/
StefanosChaliasos/solidity-inline-assembly#database-description).

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 165. Publication date: October 2022.

https://github.com/StefanosChaliasos/solidity-inline-assembly#database-description
https://github.com/StefanosChaliasos/solidity-inline-assembly#database-description

165:8 Stefanos Chaliasos, Arthur Gervais, and Benjamin Livshits

20 fragments from the first category and 5 from each other cluster in every iteration. This procedure
was repeated five times. During these five iterations, we identified ten classes of inline assembly
use. Our qualitative steps are in line with the best practices of previous work. In a similar study
about eval usage in R, Goel et al. [2021] studied 113 eval uses, while previous work [Chaliasos et al.
2021] have been performed a manual analysis in iterations to reduce bias risks.

3.4 Threats to Validity
We use a standard methodology [Feldt and Magazinius 2010] to identify validity threats, which we
mitigate where possible. This section discusses threats to internal and external validity.

Internal Validity. One potential threat to internal validity is associated with the selection criteria
and representativeness of the inline assembly fragments on the qualitative analysis. We selected
fragments frommultiple clusters with different characteristics to minimize this threat. Another issue
regarding the validity of the quantitative analysis is that there may exist an implementation bug
somewhere in the codebase. We extensively tested the framework to mitigate this risk. Furthermore,
the framework and the raw data will be publicly available for other researchers and potential users
to check the validity of the results.

External Validity. A potential threat to the external validity is related to the fact that the set of smart
contracts we have considered in this study may not be an accurate representation of all deployed
smart contracts in Ethereum. Therefore, we attempt to reduce the selection bias by leveraging
an extensive collection of real, reproducible smart contracts from Etherscan. However, Etherscan
does not have 45% of the total contracts’ source code. Nevertheless, we have created the largest
dataset of Solidity smart contracts to the best of our knowledge. Third-party APIs like Google Big
Query and Etherscan also compromise threats to external validity. An Ethereum archive node and
a customized crawler would be a superior alternative to BigQuery. However, analyzing blockchain
data for more than six years takes a long time. Unfortunately, there is no other method to get the
source code of contracts than a blockchain explorer. To mitigate these concerns, we chose 100
random addresses and verified that both the BigQuery data and the source codes retrieved from
Etherscan are correct.

4 QUANTITATIVELY STUDY INLINE ASSEMBLY ON SOLIDITY SMART CONTRACTS
This section presents the main findings of our quantitative analysis on smart contracts containing
inline assembly in our corpus. We first measure how prevalent is inline assembly in smart contracts
and how extensively it is used in those contracts (Section 4.1). Then, we study the characteristics
of contracts that contain inline assembly and compare them with those that do not use inline
assembly (Section 4.2). Following that, we examine the evolution of inline assembly usage through
time (Section 4.3). Finally, we complete the qualitative analysis by performing a taxonomy of inline
assembly based on the instruction usage (Section 4.4).

As noted in Section 3.1, all contracts in our dataset have at least one transaction or a token transfer,
ensuring that all the contracts have been utilized in practice. Nevertheless, as more important
contracts (i.e., contracts with more than 10 transactions) may differ from the rest of the contracts,
we automated the quantitative analysis and re-ran the analyses for the following groups: contracts
with more than 10 transactions, contracts with more than 10 token transfers, contracts with more
than 10 transactions or 10 token transfers, and contracts with more than 10 transactions and 10
token transfers. There were no discernible differences between these categories regarding the
insights gained from the research questions. However, for some specific sub-questions, the results
for the contracts with more than 10 transactions deviate from the results of the complete dataset. In

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 165. Publication date: October 2022.

A Study of Inline Assembly in Solidity Smart Contracts 165:9

Description
Total Contracts 6,851,728
Total Contracts using Inline Assembly 1,583,177 (23%)
Total Unique Contracts 159,241
Total Unique Contracts using Inline Assembly 62,848 (39%)
Total Inline Assembly Fragments 3,427,424
Total Inline Assembly Fragments In Unique Contracts 176,961
Total Inline Assembly Unique Fragments 5388
Total Instructions 33,722,920

Fig. 4. Statistics about contracts using inline as-
sembly, unique contracts using inline assembly,
inline assembly fragments, and instructions.

Description max min mean median std
Fragments per contract 81 1 2.16 2 3.57
Unique fragments per contract 53 1 2.08 2 2.93
Instructions per fragment 4013 1 9.94 8 9.44
Instructions per unique fragment 4013 1 10.62 4 63.52

Fig. 5. Statistics about inline assembly fragments per
contract, unique inline assembly fragments per con-
tract, and instructions per fragment.

these instances, at the end of each research question, we include a paragraph in which we describe
the noteworthy differences for contracts with more than 10 transactions.

4.1 RQ1: Measuring Inline Assembly

1 10 20 30 40 50 60 70 81

Number of fragments

40

50

60

70

80

90

100
P

er
ce

nt
ag

e

Fig. 6. Cumulative distribution of fragments
per contract.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 30 40
50

+

Instructions

0

200

400

600

800

1000

1200

F
ra

gm
en

ts

Fig. 7. Distribution of instructions per unique
fragment.

This section reports on the frequency of inline as-
sembly in Solidity smart contracts based on our
quantitative analysis. Our corpus contains 6,851,728
contracts deployed in Ethereum, of which 1,583,177
(23%) contain inline assembly (c.f. Figure 4). These
contracts contain a total of 3,427,424 inline assem-
bly fragments. Furthermore, out of 159,241 distinct
contacts 62,848 utilize inline assembly (39%) con-
taining 176,961 inline assembly fragments. Notably,
only 5388 of those fragments are unique, indicating
that developers of smart contracts reuse the same
inline assembly fragments across multiple smart
contracts. The 3,427,424 fragments use 33,722,920
instructions in total, whereas the unique fragments
use 56,262 instructions.

Remark: In the following, we conducted the
quantitative analyses without deduplication 7 to
assess the impact and presence of inline assembly
in contracts deployed in the Ethereum blockchain.
This way, we can measure how widespread is in-
line assembly in deployed contracts (i.e., contracts
executed in the Ethereum blockchain).
The percentage of projects with inline assembly

is high (more than one of every five contracts uses
inline assembly), which is surprising because many
Solidity source code analysis tools are based on the
assumption that inline assembly is rarely used [Feist et al. 2019; Tikhomirov et al. 2018; Tsankov
et al. 2018]. These results are consistent with the study of Rigger et al. [2018], which indicates that
15.6% of C projects contain inline assembly. Nevertheless, in terms of density, inline assembly is
orders of magnitudes more common than in C. Specifically, in Solidity smart contracts, there is
one inline assembly fragment per 212 LOC, while in C projects, there is only one fragment per
40 KLOC of C code on average. This is mostly because smart contracts are often smaller than C

7Unless otherwise mentioned

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 165. Publication date: October 2022.

165:10 Stefanos Chaliasos, Arthur Gervais, and Benjamin Livshits
0 1 2 3 4 5 6 7 8 9 10 20

30
+

Number of Transactions

0%

20%

40%

60%

80%

P
er

ce
nt

ag
e

of
co

nt
ra

ct
ad

d
re

ss
es

Assembly

Non Assembly

Fig. 8. Distribution of transaction
number per contract.

0 1 2 3 4 5 6 7 8 9 10 20
30

+

Number of Unique Callers

0%

20%

40%

60%

80%

P
er

ce
nt

ag
e

of
co

nt
ra

ct
ad

d
re

ss
es

Assembly

Non Assembly

Fig. 9. Distribution of unique trans-
action callers per contract.

0 1 2 3 4 5 6 7 8 9 10 20
30

+

Number of Token Transfers

0%

20%

40%

60%

80%

P
er

ce
nt

ag
e

of
co

nt
ra

ct
ad

d
re

ss
es

Assembly

Non Assembly

Fig. 10. Distribution of token trans-
fers per contract.

projects (hundreds vs. thousands of LOC per project). Yet, it is surprising that in comparison with
C projects, inline assembly is as much used in Solidity because there are more use-cases in C that
inline assembly is the only way to perform certain operations (e.g., multicore programming, clock
cycle counter, and other low-level operations). Hence, we manually study Solidity inline assembly
fragments to reason why developers use inline assembly (c.f. Section 5).

Each contract contains on average 2.16 fragments and 2.08 unique fragments (c.f. Figure 5). We
observe that although there is much duplication between contracts, there is minimal duplication
within contracts. Figure 6 shows the cumulative distribution of fragments per contract. Notably,
54% of the contracts contain only one inline assembly fragment, and 95% contain at most 3. The
aforementioned results suggest that practitioners prefer to use inline assembly for specific tasks in
their programs.
To measure the number of instructions executed in an inline assembly fragment, we consider

only unique fragments to get a better overview of the characteristics of the fragments. On average,
a fragment contains 10.62 instructions with a median of 4. In some cases, there might be used as
many instructions as 4K. Figure 7 illustrates the distribution of the number of instructions included
in each fragment. Remarkably, more than half of the fragments (54%) use less than five instructions.
Nevertheless, 30% of the fragments use more than ten instructions, while a non-negligible number
of fragments (10%) use more than 20 instructions. The number of instructions utilized by a fragment
reflects how simple, and thus how easy, an inline assembly fragment is to write and comprehend.

Discussion. Inline assembly is widely used in Solidity smart contracts deployed on the Ethereum
blockchain. Nearly every fifth contract contains at least one inline assembly fragment. Nevertheless,
the majority of contracts use inline assembly modestly (2.16 fragments on average). Furthermore,
although fragments are typically small (having a median of 4), numerous contracts (30%) use many
inline assembly instructions while performing complex operations. As a result, studying inline
assembly in more depth is essential for understanding how developers use inline assembly, and
what the implications of using inline assembly are in a blockchain environment.

Differences for contracts with more than 10 transactions. Notable, the use of inline assembly is
much more widespread in contracts with more than 10 transactions (42% vs. 23%), highlighting the
need for a deeper understanding of inline assembly fragments and improved tooling for analyzing
inline assembly. Regarding the number of inline assembly fragments per deployed contract and the
number of instructions per inline assembly fragment, contracts with more than 10 transactions
have a slightly greater mean number of fragments (2.91 vs. 2.16), but almost the same number of
instructions per fragment.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 165. Publication date: October 2022.

A Study of Inline Assembly in Solidity Smart Contracts 165:11

4.2 RQ2: Smart Contract Characteristics
The goal of this section is twofold. First, we analyze the source code and the metadata of our
corpus to discuss the characteristics of the smart contracts containing inline assembly, and secondly,
we compare the results with the respective characteristics of contracts that do not utilize inline
assembly. Recall that the population of smart contracts containing inline assembly is 1,583,177,
whereas our corpus includes 5,268,551 contracts that do not contain inline assembly; thus, the latter
group may be more representative. The properties that we will utilize to examine the contracts are
as follows: (1) number of transactions, (2) number of token transfers, (3) unique callers, (4) balances,
(5) ERC token tag (i.e., fungible or Non-fungible Token (NFT)), (6) Etherscan labels, and (7) lines of
code.

Description max min mean median std
Non Assembly Transactions Number 126,721,373 0 97.16 0 60,702.88
Assembly Transactions Number 19,565,909 0 145.72 1 23,631.73
Non Assembly Unique Callers 18,282,428 0 16.42 0 8209.55
Assembly Unique Callers 5,657,480 0 37.45 1 5450.16
Non Assembly Token Transfers 37,174,087 0 26.42 2 16,539.01
Assembly Token Transfers 8,143,788 0 191.38 2 13,767.15
Non Assembly Balance 9,833,346 0 3.94 0 5347.19
Assembly Balance 572,709 0 3.01 0 879.55
Non Assembly LOC 9461 0 62.36 40 67.53
Assembly LOC 14,151 0 248.94 161 511.76

Fig. 11. General statistics about contracts containing inline
assembly and those that do not.

Figure 11 shows statistics for the char-
acteristics of contracts that make use of
inline assembly versus those that do not.
Specifically, we have computed statistics
for the number of transactions, token
transfers, unique callers, balances, and
lines of code. Contracts that include as-
sembly have more transactions on aver-
age (145.72 vs. 97.16). Furthemore, more
contracts without assembly have no trans-
action (c.f. Figure 8). The distribution of
unique callers (c.f. Figure 9) follows the
distribution of the number of transactions, which is reasonable as most contracts only have a few
transactions. Hence, they only have a single caller (almost 40% for contracts using assembly) or
less than five unique callers (99% of contracts without assembly). On the flip side, token transfers
are more common in contracts that do not use inline assembly (c.f., Figure 10).

Interestingly, there is a slightly higher percentage of contracts using inline assembly with many
transactions. To investigate why that happens, we manually study the top contracts in terms of
transaction numbers. Although the most popular contract addresses are stablecoins and other
token contracts in both categories, contracts with inline assembly are more diverse. For instance, in
contracts without assembly, eight of the ten contracts with most transactions are token contracts,
and two are decentralized exchanges. In comparison, just four of the contracts that make use of
assembly are token contracts, while the remaining contracts implement Decentralized Finance
(DeFi) protocols (e.g., DEX and NFT marketplaces). Importantly, we also observed that contracts
containing assembly, with more than 50000 transactions, use more inline assembly fragments on
average (4.12 vs. 2.16) than when they have fewer transactions.

Non Assembly ERC-20 1.30%
Assembly ERC-20 0.09%
Non Assembly ERC-721 0.01%
Assembly ERC-721 0.02%

Fig. 12. Percentage of contracts
that implement ERC-20 or ERC-
721 standard.

We detect no substantial difference in the balances of contracts
between contracts involving inline assembly and others. (c.f. Fig-
ure 11). The former has a marginally higher mean balance because
the population of contracts using inline assembly is smaller than
the others, and in both categories, most contracts have zero or
near-zero balance. Contracts with a vast balance are usually to-
ken bridges or Initial Coin Offering wallets (ICO wallets) used for
funding purposes.

Next, we categorized the contracts based on labels retrieved from
Etherscan. In both categories, “Token Contracts” and “Old Contracts” are the most common labels.
Interestingly, some popular DeFi protocols use inline assembly in their deployed contracts, while

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 165. Publication date: October 2022.

165:12 Stefanos Chaliasos, Arthur Gervais, and Benjamin Livshits

others with similar functionality do not utilize inline assembly. The most prolific protocols that
use inline assembly are Maker, bZx, Compound, and ENS, whereas some popular protocols that
do not use inline assembly are Uniswap, Balancer, and Synthetix. Furthermore, we observe from
both Etherscan labels and the metadata of our dataset that NFT contracts (i.e., ERC-721) tend to use
inline assembly more frequently than ERC-20 tokens (c.f. Figure 12).

Finally, to get an insight into the complexity of Solidity smart contracts that use inline assembly,
we measured the lines of code for the contracts in our dataset. Figure 11 presents general statistics
about the lines of code of contracts. Notably, smart contracts containing inline assembly have a
mean of 248.94 LOC, while other contracts contain 62.36 LOC on average. The main reason for this
difference is that only a few contracts (10%) containing inline assembly are small (i.e., less than 50
lines). One possible explanation is that developers implementing small contracts do not typically
require inline assembly. On the other side, there is a greater likelihood that large contracts will
require assembly to conduct certain operations or optimize performance and gas consumption.

Discussion. The facts presented here indicate that there are little distinctions between contracts
that use inline assembly and other contracts. However, an important point is that the usage of inline
assembly appears to be a developer preference, as protocols with near identical functionalities
(e.g., decentralised exchanges) choose whether or not to utilize it. Another important distinction
is that contracts using inline assembly are often larger than average contracts. Additionally, NFT
contracts are more likely to employ inline assembly than ERC-20 token contracts. Finally, when
popular contracts (i.e., those with a large volume of transactions) employ inline assembly, they
often include a greater number of inline assembly fragments than non-popular contracts (4.12 vs.
2.16).

Differences for contracts with more than 10 transactions. Regarding this research questions, there
are no discernible variations between the contract characteristics of the entire dataset and those
with more than 10 transactions. The primary reason for this is that contracts with greater values
have a larger impact on both datasets. For certain features such as TVL, we notice a significant
increase in both contracts with and without inline assembly. Specifically, the mean TVL rises from
3.94 to 103 for non-assembly contracts with more than 10 transactions, while it increases from
3.01 to 30.46 for contracts with inline assembly. Still, we observe that contracts without inline
assembly have a higher TVL in both datasets. We also note similar differences in the number of
token transfers and essentially no variation in the number of transactions, unique callers, and LOCs
across the two datasets.

4.3 RQ3: Evolution of Inline Assembly
To gain a better understanding of how inline assembly usage has evolved over time, we counted the
number of deployed contracts that include inline assembly in each block of our corpus. Furthermore,
since developers may prefer to use specific versions of the compiler when using inline assembly,
we also assess how many contracts that contain inline assembly fragments have been compiled
with each compiler version.

Evolution through time. Figure 13 presents the percentage of smart contracts with published code
in Etherscan that include at least one inline assembly fragment. We observe that developers started
using inline assembly in late 2015, and since then, more and more contracts have included assembly
fragments. The spikes and drops are difficult to explain because we only have a percentage of
the contracts deployed in our corpus. For the drop in early 2017, we observed a large number of
contracts with published code deployed in this period, and it happens that few of them include inline
assembly. We also believe that the spike in 2017 happened because Solidity 0.4.12 was published

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 165. Publication date: October 2022.

A Study of Inline Assembly in Solidity Smart Contracts 165:13

2015 2016 2017 2018 2019 2020 2021 2022

Date

0.00

0.05

0.10

0.15

0.20

%
of

co
nt

ra
ct

s
u

si
n

g
as

se
m

b
ly

0.0M
0.5M
1.0M
1.5M
2.0M
2.5M
3.0M
3.5M
4.0M
4.5M
5.0M
5.5M
6.0M
6.5M
7.0M

N
u

m
b

er
of

C
on

tr
ac

ts

% of contracts using assembly

Number of contracts without assembly

Number of contracts with assembly

Fig. 13. Evolution of contracts using inline assembly through time.

in mid-2017. This version is the first with full support for YUL. Notably, the first comment in the
release message mentions that “This release introduces the AST export, solidifies inline assembly, . . . ”.
In summary, we observe that contracts using inline assembly increase as the Solidity language and
the Ethereum ecosystem evolve and mature.

Major
Version

Contracts Without
Assembly

Contracts With
Assembly

Percentage of Contracts
With Assembly

0.1.x 13 0 0%
0.2.x 99 0 0%
0.3.x 4,168,244 37 0%
0.4.x 1,014,702 489,165 32%
0.5.x 39,071 219,269 84%
0.6.x 12,785 66,484 83%
0.7.x 7638 748,356 98%
0.8.x 22,340 59,866 72%

Fig. 14. Number of contracts compiled with each solc
version.

Usage of inline assembly per compiler. We pro-
ceed by examining the number of contracts
that use inline assembly per compiler version.
We do not extract the compiler version from
the source code, but rather retrieve it through
Etherscan to determine the exact compiler ver-
sion used to generate and deploy the smart con-
tract. Figure 14 illustrates for each version the
number of contracts that do not use inline as-
sembly, those that use, and the percentage of
contracts using inline assembly and been com-
piled with a particular version. The first compiler version that adds support for inline assembly
is v.0.3.1. Nevertheless, only a negligible number of contracts compiled with this version use
inline assembly. In contrast, more contracts use inline assembly for each of the subsequent compiler
versions. Notably, there seems to be a preference to compile smart contracts containing inline
assembly fragments using the latest compilers.

Discussion. There is an evident trend that inline assembly usage in Solidity smart contracts
increases over time. This result highlights the importance of inline assembly as a core component
of smart contracts. Furthermore, there are some indications that developers use the latest compiler
versions to compile contracts containing inline assembly while compiling other contracts with
older versions. We leave it as future work to investigate why developers prefer to compile their
contracts with older versions when there is no strict restriction (such as some inline assembly
features available only in the latest versions).

Differences for contracts with more than 10 transactions. Similar to the preceding research question,
we do not observe significant changes in the evolution of inline assembly utilization for contracts

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 165. Publication date: October 2022.

165:14 Stefanos Chaliasos, Arthur Gervais, and Benjamin Livshits

with more than 10 transactions. The most significant difference is that the percentage of contracts
employing inline assembly surpassed 10% percent in 2017, and although there is a dip after that
point (similar to Figure 13), the increase is more steady than in Figure 13.

4.4 RQ4: A Taxonomy of Inline Assembly
The preceding sections provided a quantitative analysis of inline assembly usage in Solidity smart
contracts; this section attempts to classify inline assembly instructions. To do so, we extend the
categorization performed by Wood [2022] in Ethereum’s yellow paper. Specifically, we reclassified
some instructions (e.g., stop from Arithmetic Operations to System Operations), we split some
categories (e.g., Stack, Memory, Storage, and Flow Operations). Finally, we include two YUL-specific
categories (i.e., YUL Declarations and YUL Special Instructions).

Instruction % Projects Total Projects Total Occurrences
add 80.22% 1,270,036 7,680,862
sub 7.75% 122,728 244,033
exp 1.78% 28,263 77,652
div 1.12% 17,688 125,294
mul 0.92% 14,639 116,783
mod 0.70% 11,107 20,820
mulmod 0.06% 942 111,854
addmod 0.00% 64 1084
signextend 0.00% 2 40
sdiv 0.00% 2 24
smod 0% 0 0

Fig. 15. Instructions for arithmetic operations.

Instruction % Projects Total Projects Total Occurrences

Comparison

eq 49.27% 780,014 1,618,655
gt 1.88% 29,814 35,128
lt 1.98% 31,296 115,250
slt 0.04% 685 702
sgt 0.00% 63 190

Bitwise Logic

and 68.24% 1,080,430 1,250,659
iszero 7.94% 125,723 282,182
byte 3.09% 48,854 69,582
or 1.64% 25,915 48,334
shr 2.04% 32,228 59,860
not 1.31% 20,723 43,925
xor 0.35% 5523 10,274
shl 0.19% 3026 22,283
sar 0.00% 21 36

Fig. 16. Comparison and Bitwise Logic Operations.

pos := mload(0x40)

mstore(0x40, add(pos, length))

Fig. 17. Arithmetic operations are commonly used
with memory operations.

result := and(

eq(mload(clone), mload(other)),

eq(mload(add(clone, 0xd)), mload(add(other, 0

xd)))

)

Fig. 18. Example where a combination of compari-
son and bitwise instructions to save a boolean value.

The first category contains arithmetic op-
erations (Section 4.4.1). The second category
of instructions includes comparison and bit-
wise logic operations (Section 4.4.2), and
the third one contains hashing operations,
i.e., keccak256 (Section 4.4.3). Following that,
the instructions of the fourth category pro-
vide environmental information, for exam-
ple, return information about the contract
caller and the contract’s code (Section 4.4.4).
The fifth type of instructions contains in-
formation about the current block, such as
the current block number and its times-
tamp (Section 4.4.5). The sixth category com-
prises low-level operations for manipulat-
ing the stack, the memory, and the storage
(Section 4.4.6). Following are the flow op-
erations (Section 4.4.7), which include op-
codes for control flow (e.g., JUMP) and YUL
control flow instructions (e.g., for-loop). In-
structions for creating new contracts, com-
municating with other contracts, and manip-
ulating the execution are included in the
eighth category (Section 4.4.8). The ninth
group is composed of the YUL declaration
instructions for variables and functions (Sec-
tion 4.4.9), while the instructions of the tenth
category are used for logging operations (Sec-
tion 4.4.10). Finally, although there are some
additional opcodes for more general ‘man-
agement’ (e.g., moving values, pushing, and
popping from the stack), such instructions
are not used in inline assembly fragments.
Similarly, certain more specialized YUL in-
structions (datasize, dataoffset, datacopy,
setimutable, loadimmutable, linkersymbol, and memoryguard), which expose more advanced
YUL features are rarely utilized in practice. The sole instruction we detected in only 12 contracts

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 165. Publication date: October 2022.

A Study of Inline Assembly in Solidity Smart Contracts 165:15

is datasize, which takes string literals as arguments and returns their size. It is worth noting
that there may be several reasons for employing assembly code; thus, practitioners may include
instructions from multiple categories within a single fragment. In Section 4.4.11, we discuss how
inline assembly instructions are combined in the smart contracts of our corpus.

4.4.1 Arithmetic Operations (80.31%). Arithmetic operations (see Figure 15) are frequently used
in inline assembly fragments. Notable add opcode is the second most common instruction in our
dataset. Beyond performing optimizations such as in vector-reduction arithmetics (e.g., vector
summation), arithmetic instructions are typically used along with memory instructions for memory
management. For example, in the snippet of Figure 17 add is used to allocate some bytes in the
memory. Interestingly, this appears to be quite common when using inline assembly in Solidity
smart contracts, and the primary reason developers use the add instruction. In comparison, Rigger
et al. [2018] observed no such pattern in C inline assembly fragments. Finally, one instructions (i.e.,
smod) was never used in any of our dataset’s contracts.

Instruction % Projects Total Projects Total Occurrences
keccak256 0.96% 15,266 109,831
sha3 0.01% 172 1385

Fig. 19. Hashing operations.

Instruction % Projects Total Projects Total Occurrences

Current
Environment

gas 23.51% 372,278 411,752
returndatasize 16.91% 267,645 620,491
returndatacopy 16.89% 267,442 289,248
calldatacopy 15.09% 238,884 241,679
calldatasize 15.15% 239,873 482,474
calldataload 8.45% 133,803 231,687
chainid 5.43% 85,926 87,881
address 0.75% 11,931 12,087
codesize 0.33% 5216 5216
codecopy 0.33% 5216 5216
callvalue 0.22% 3490 6009
caller 0.17% 2677 2864
gasprice 0.00% 9 17
origin 0.00% 16 16
selfbalance 0.00% 11 44

Account
Information

extcodecopy 44.97% 712,027 712,070
extcodesize 12.84% 203,304 226,917
extcodehash 3.26% 51,645 51,771
balance 0.56% 8823 8824

Fig. 20. Environmental Information.

Instruction % Projects Total Projects Total Occurrences
timestamp 0.85% 13,513 13,544
number 0.30% 4684 4697
blockhash 0.30% 4674 4682
coidbase 0.29% 4669 4671
difficulty 0.00% 1 1
gaslimit 0% 0 0

Fig. 21. Block information.

4.4.2 Comparison and Bitwise Logic Opera-
tions (77.91%). Certain inline assembly frag-
ments, mainly those larger in size, contained
instructions to compare and perform bitwise
operations (c.f. Figure 16). While the compar-
ison instructions are often used in conjunction
with control flow operations, several fragments
use a combination of comparison and bitwise
instructions to save a boolean value to a vari-
able. For instance, in Figure 18, mload is used to
retrieve two pairs of addresses, followed by eq
to compare the pairs, and finally, and is used to
apply logical conjunction. Additionally, a non-
negligible number of contracts use the iszero
instruction, which checks if the topmost ele-
ment of the stack is 0. Finally, similarly to arith-
metic operations, some instructions are barely
used.

4.4.3 Hashing Operations (0.97%). Only a few
contracts use a hash function in inline assembly
fragments. The fragments that perform hash
operations are typically large and implement
complex logic. For example, a common use case
is to apply the keccak256 instruction after re-
trieving some data from memory and then use
that value in Solidity code. Note that sha3 was
used as an alias to keccak256 until compiler
version 0.5.0. Since then, only the keccak256
instruction has existed. Finally, unlike Solidity, the hash function in inline assembly takes a byte
range in memory rather than a string.

4.4.4 Environmental Information (80.86%). Numerous contracts take advantage of inline assembly
instructions to query the blockchain and execution environment. This category is further divided
into two subcategories: Current Environment and Account Information (c.f. Figure 20). The former

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 165. Publication date: October 2022.

165:16 Stefanos Chaliasos, Arthur Gervais, and Benjamin Livshits

includes instructions that provide information about the current execution, such as returning the
address of the currently executing account, whereas the latter contains instructions that return
information for an arbitrary account address. Notably, instructions in this category are most
frequently used in isolation, that is, they are not combined with instructions from other categories.
One such instance is the use of extcodesize to determine whether an address is a contract or
a regular account. Specifically, if an address is a contract, then extcodesize returns the size of
the code on that address. Otherwise, it returns 0. Note that this procedure is not available in plain
Solidity; consequently, determining if an address is a contract requires the use of inline assembly.
Similarly, many inline assembly fragments use the extcodecopy instruction to obtain the code of
another contract, despite that operation being available in Solidity (_addr.code). Another typical
use case of instructions from this category is to compute the amount of available gas in the current
execution (through the gas instruction), extract a certain amount, and pass the result to a message-
call opcode (e.g., staticcall). Finally, the returndatasize and returndatacopy instructions,
which access data from the prior environment, are extensively used.

4.4.5 Block Information (0.85%). Instructions in this category return information about the current
block (see Figure 21). Notably, these instructions are sparsely utilized, and one of them has never
been used in any contract in our corpus. The most common instruction in this group is timestamp,
which returns the current block’s timestamp. The primary application of this instruction is to
retrieve its result and use it to produce a pseudo-random number. Finally, these instructions are
used only in large fragments.

Instruction % Projects Total Projects Total Occurrences

Stack pop 0.24% 3859 7894
pc 0% 0 0

Memory mload 85.32% 1,350,842 6,659,754
mstore 48.92% 774,457 4,653,053
mstore8 0.29% 4595 37,482
msize 0.26% 4139 4164

Storage sload 8.22% 130,119 190,043
sstore 3.17% 50,216 145,625

Fig. 22. Stack, Memory, and Storage Operations.

Instruction % Projects Total Projects Total Occurrences

YUL
control flow

switch 21.35% 337,978 484,094
if 4.76% 75,382 181,460
for 1.78% 28,226 85,049
leave 0% 0 0

Control-Flow
Opcodes

jumpi 0.07% 1033 1354
jump 0.01% 117 118
jumpdest 0% 0 0

Fig. 23. Flow operations.

4.4.6 Stack, Memory, and Storage Operations
(90.94%). Themost frequently used instructions
in inline assembly fragments are those that in-
teract with the stack, memory, and storage. We
further classify the instructions into three sub-
categories (c.f. Figure 22). Stack instructions
are rarely used, and their application is lim-
ited to very specialized problems. On the flip
side, memory instructions are extensively used
in our dataset. Moreover, these instructions
are typically combined with instructions from
other categories. For instance, a typical use case
is to use mload to load data from memory, then
utilize that data in other procedures, and finally,
either save the result back in the memory or
use it directly for another operation. Storage
instructions follow the same patterns as mem-
ory instructions but are less used due to their
high cost.

4.4.7 Flow Operations (24.17%). Control-flow-related instructions (c.f. Figure 23) are mostly con-
fined to larger inline assembly fragments to facilitate branching. A less common use case is for
performing loops (1.78%). Interestingly, the switch statement, which is unique to YUL (Solidity
does not provide a switch statement), is the most frequently used control-flow construct. Note
that the if statement can only be used for conditionally executing a code block, and no ‘else’
block can be defined. Hence, the switch statement is more common in inline assembly fragments.
Before the introduction of YUL, the control flow was achieved with jump instructions. However,

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 165. Publication date: October 2022.

A Study of Inline Assembly in Solidity Smart Contracts 165:17

since the introduction of YUL, the jump instructions have been prohibited because they obfuscate
the control flow.

Instruction % Projects Total Projects Total Occurrences

Call

delegatecall 21.36% 338,214 340,921
call 2.64% 41,770 49,813
staticcall 1.39% 21,949 26,319
callcode 0% 0 0

Create create2 45.09% 713,871 714,477
create 6.58% 104,130 104,446

Execution

revert 28.59% 452,665 686,586
return 15.77% 249,679 290,419
stop 0.15% 2319 2329
selfdestruct 0.00% 4 7

Invalid invalid 0.04% 640 1738

Fig. 24. System operations.

Instruction % Projects Total Projects Total Occurrences
let 73.24% 1,159,452 3,579,730
function 0.00% 49 113

Fig. 25. YUL declarations.

Instruction % Projects Total Projects Total Occurrences
log1 0.18% 2854 2869
log4 0.05% 809 820
log3 0.03% 548 569
log0 0.03% 539 539
log2 0.03% 541 541

Fig. 26. Logging Operations.

4.4.8 System Operations (74.16%). This cate-
gory contains instructions for executing calls,
creating new contracts, halting the execution,
as well as the invalid opcode that does noth-
ing (see Figure 24). The most common instruc-
tion is create2. In comparison to other instruc-
tions from this category, create2 and create
are typically used in small fragments (less than
three lines of code). Note that before Solid-
ity version 0.7.0, create2 was only available
through inline assembly. delegatecall is used
in large fragments because it requires some pre-
call preparation and some further instructions
to handle the call’s outcome. Execution instruc-
tions are often used in conjunction with con-
trol flow instructions to revert a transaction.
Furthermore, in most cases, the return instruc-
tion is used in fragments that also contain the
revert instruction.

4.4.9 YUL Declarations (73.24%). Several con-
tracts use the let instruction to declare a
variable inside an inline assembly fragment,
whereas only 49 contracts declare at least one
function in a fragment (see Figure 25). let is typically used to store the result of a call instruction
or save data retrieved by the memory. Functions are used in large fragments and typically perform
complex arithmetic computations.

4.4.10 Logging Operations (0.20%). There are five log opcodes in EVM, the first one (i.e., log0)
appends a log record without a topic, while the last one (i.e., log4) appends a log record with
four topics (c.f. Figure 26). Normally, log instructions are used at the end of an inline assembly
fragment to append a message in the logs. However, another use case is using a switch statement
to determine which log command to use based on the topics it needs to write.

4.4.11 Instructions Usage and Combination. Figure 27 illustrates how instructions from different
categories are combined in contracts. Note that the chart includes all categories that are utilized
by more than 1% of our dataset’s contracts and all combinations that are detected in more than
500 contracts. Notably, we observe that the majority of contracts incorporate instructions from
numerous categories. The lone exception is the environmental information that more than 100,000
contracts use only instructions from this category. Another critical insight is that although memory
operations, arithmetic operations, and comparison/bitwise logic instructions are the three of the
four most prevalent types of instructions, they almost always paired with other instructions, and
typically with instructions from more than one category. Furthermore, an sizable percentage of
contracts (more than 180,000) utilize instructions from all categories.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 165. Publication date: October 2022.

165:18 Stefanos Chaliasos, Arthur Gervais, and Benjamin Livshits

Stack, Memory, and Storage

Enviromental Information

Arithmetic Operations

Comparison and Bitwise Logic

System Operations

YUL Declarations

Flow Operations

01.0M
Category set size

0

200000

400000

600000

In
te

rs
ec

ti
on

si
ze

Fig. 27. Instruction usage and their combinations. Categories with • in the same column are combined in
fragments, and the population of their intersection is displayed in the upper bar chart. The intersection of all
categories except instructions from FlowOperations is themost commonly used combination in inline assembly
fragments. Contrarily, Environmental Information opcodes are used most frequently without instructions from
other categories. Note that the chart includes all categories that are utilized by more than 1% of our dataset’s
contracts and all combinations that are detected in more than 500 contracts.

Discussion. This Section’s primary objectives were to (1) classify instructions, (2) quantify which
instructions are most frequently utilized in practice, and (3) examine which instructions are com-
bined in contracts using inline assembly. Only 37 out of 85 8 instructions are used in our corpus by
at least 1% of the contracts. One essential observation is that although inline assembly fragments
have a median of only 4 instructions (c.f. Figure 5), they typically include instructions from at
least three categories. The majority of fragments appear to focus on exploiting functionalities
related to environmental information instructions, or manipulating/retrieving data in memory and
storage. Furthermore, in this Section, we identify several prevalent inline assembly usage patterns.
For instance, arithmetic operations are primarily used for memory management. Additionally,
certain instruction providing environmental information are frequently used because they expose
functionality that is unavailable in Solidity. The following Section investigates and discusses usage
pattern in greater detail.

Differences for contracts with more than 10 transactions. In this research question, we observe some
differences between contracts with more than 10 transactions and others. First, it is noteworthy that
contracts with more than 10 transactions favor extcodesize (37.43%) and extcodehash (13.61%)
over extcodecopy (4.61%), which is significantly different from the results of the entire dataset,
where extcodecopy (44.97%) is the most frequently used opcode for retrieving account information.
Another similar observation is that create is more prevalent than create2 in the dataset of
contracts with more than 10 transactions (12.40% vs. 6.58% and 6.77% vs. 45.09%). In addition, we
notice variations in the proportion of contracts that employ instructions from particular categories.
The twomore significant changes are in the usage of ‘Comparison and Bitwise Logic Operations’ and
‘Flow Operations’. Specifically, only 53.85% (vs. 77.91%) of contracts with more than 10 transactions
use instructions from the former category, whereas we notice an increase from 24.17% to 37.82% for
instructions from the ‘Flow Operations’ category. The combination of instructions is comparable

8Note that we count all opcodes and YUL instructions available in inline assembly. We do not include all specialized YUL
instructions that do not appear in our corpus.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 165. Publication date: October 2022.

A Study of Inline Assembly in Solidity Smart Contracts 165:19

Class Functionality not
available in Solidity Optimization Complementary

Fragment
Single Instruction Unavailable in Solidity ✓ ✗ ✗
Deserialization ✓ ✓ ✓
String, Bytes, and Math Utils ✓ ✓ ✗
Proxy Implementation ✓ ✓ ✗
Error Handling ✓ ✓ ✓
Call other Contract ✗ ✓ ✗
Optimizations for Cryptographic Primitives ✗ ✓ ✗
Handling Arbitrary Data ✓ ✓ ✓
Fine-Grained Memory and Storage Control ✓ ✓ ✓
Manual Inlining ✗ ✓ ✗

Fig. 28. Usage classes of inline assembly in Solidity contracts.

to the entire dataset, with the exception that the combination that includes ‘Flow Operations’ is
the most common.

5 RQ5: USAGE OF INLINE ASSEMBLY
According to Solidity’s official documentation, inline assembly is intended to used to enhance
the Solidity language by writing libraries and performing optimizations when the compiler is
inefficient to optimize code aggressively. To understand why developers utilize inline assembly in
practice, we manually inspected 170 distinct inline assembly fragments. Firstly, we examined the
70 most-deployed fragments, which account for 90% of all inline assembly use in our corpus. Then,
we further selected 100 more fragments from other clusters to have a more representative and
complete dataset of fragments. Specifically, we studied 25 additional fragments from each of the
following categories: (1) the contracts with the most transactions, (2) the contracts with the most
unique callers, (3) contracts with the highest usage (i.e., duplicated), and (4) 25 random fragments. 9
We present examples from ten classes from this batch (c.f. Figure 28). This classification is

not exhaustive since there are 5388 unique fragments in our dataset, many of which do not
fit in a particular category. Furthermore, we characterize the ten classes based on three main
goals: fragments that provide functionality not available in Solidity, fragments used to perform
optimizations, and complementary fragments used to support another inline assembly fragment.
Note that one fragment might accomplish multiple tasks, and hence belongs to many classes. Finally,
we will briefly discuss some additional use cases we identified during our manual analysis.

Single Instruction Unavailable in Solidity. One common use of inline assembly is employing a
single opcode instruction to obtain information not available through Solidity code. For instance,
the extcodesize opcode returns the size of a contract, if an address contains a contract, otherwise,
it returns zero. It is impossible to find if an address is a contract through Solidity code; thus,
developers have to use inline assembly (c.f Figure 29). Although in most cases, developers use
Solidity to check if the return value is zero, occasionally, they compute that inside the assembly
fragments using additional instructions. Another example is the chainid opcode that returns the id
of the current chain. This opcode can be used to prevent replay attacks between different chains. 10
Note that since Solidity version 0.8.0 chainid is available in plain Solidity through block.chainid.

9Note that in case of overlap of one fragment from one category with one already studied from another category, we
replaced the overlapped fragment with a different one from the same group.
10https://eips.ethereum.org/EIPS/eip-1344

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 165. Publication date: October 2022.

https://eips.ethereum.org/EIPS/eip-1344

165:20 Stefanos Chaliasos, Arthur Gervais, and Benjamin Livshits

1 assembly { size := extcodesize(account) }

Fig. 29. The extcodesize instruction provides func-
tionality that is unavailable in Solidity.

1 assembly {
2 r := mload(add(signature, 32))
3 s := mload(add(signature, 64))
4 v := and(mload(add(signature, 65)), 255)
5 }

Fig. 30. Deserialize a signature using inline assembly.

1 assembly{
2 switch iszero(b)
3 case 0 {
4 res := div(a,b)
5 let loc := mload(0x40)
6 mstore(add(loc,0x20),res)
7 i := mload(add(loc,0x20))
8 }
9 default {
10 err := 1
11 i := 0
12 }
13 }

Fig. 31. Optimized safe division of two numbers us-
ing inline assembly

Deserialization. Inline assembly can be used to deserialize data efficiently. One frequent use case
is when one needs to recover an elliptic key signature using the ecrecover 11 built-in function.
The ecrecover function accepts three arguments: the first 32 bytes of a signature, the second 32
bytes of the signature, and the signature’s final byte. The fragment of Figure 30 recovers these
values from a variable called signature.

String, Bytes, and Math Utils. Many libraries have been emerged to complement Solidity and
provide functionalities that generally exist in a standard library. For instance, the ‘String & Slice
utility library’, 12 which provides simple and advanced operations on strings, is one of the most
frequently used libraries in Solidity smart contracts. We observe that many libraries performing
operations on strings, bytes, or even arithmetic operations heavily use inline assembly. Furthermore,
we also identify fragments where developers utilized inline assembly to perform optimizations.
The fragment of Figure 31 efficiently performs a division between two numbers (i.e., a and b), while
checking if the divisor equals zero.

Proxy Implementation. One of the most critical uses of inline assembly for many applications
in the emerging DeFi field is implementing the proxy pattern. The proxy pattern allows creating
a primary copy of a contract, then easily (and cheaply) creating clones with separate states. The
deployed bytecode delegates all calls to the primary contract. Libraries typically provide three
main functionalities (all implemented in inline assembly): a clone factory, a function to perform
the proxy call, and finally, a function to check whether an address is a proxy contract. Figure 32
presents the assembly code for a clone factory. Line 4 loads the next free memory slot to store the
clone contract data. Next, line 5 stores the bytecode for the clone contract based on the Minimal
Proxy Standard. 13 The next line stores the address location of the implementation contract so that
the proxy knows where to delegate the calls, while line 7 stores the rest of the bytecode. Finally,
line 8 deploys the clone, and the result variable contains the address of the new proxy contract
which is returned by the function.

Error Handling. Sometimes it is more convenient and efficient to perform error handling via
inline assembly. The example of Figure 33 has been taken from OpenZeppelin’s Address library, 14

11https://docs.soliditylang.org/en/latest/units-and-global-variables.html#mathematical-and-cryptographic-functions
12https://github.com/Arachnid/solidity-stringutils
13https://eips.ethereum.org/EIPS/eip-1167
14https://github.com/OpenZeppelin/openzeppelin-contracts

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 165. Publication date: October 2022.

https://docs.soliditylang.org/en/latest/units-and-global-variables.html#mathematical-and-cryptographic-functions
https://github.com/Arachnid/solidity-stringutils
https://eips.ethereum.org/EIPS/eip-1167
https://github.com/OpenZeppelin/openzeppelin-contracts

A Study of Inline Assembly in Solidity Smart Contracts 165:21

1 function createClone(address target) internal
returns (address result) {

2 bytes20 targetBytes = bytes20(target);
3 assembly {
4 let clone := mload(0x40)
5 mstore(clone, 0x3...)
6 mstore(add(clone, 0x14), targetBytes)
7 mstore(add(clone, 0x28), 0x5...)
8 result := create(0, clone, 0x37)
9 }
10 }

Fig. 32. Implementation of a clone factory.

1 ...
2 (bool success, bytes memory returndata) =
3 target.call{ value: weiValue }(data);
4 ...
5 if (! success) {
6 ...
7 assembly {
8 let returndata_size := mload(returndata)
9 revert(add(32, returndata), returndata_size)
10 }
11 }

Fig. 33. Error handling via inline assembly.

1 ...
2 bytes memory calldata = abi.encodeWithSelector(
3 IWallet(walletAddress).isValidSignature.selector, hash, signature);
4 assembly {
5 ...
6 let cdStart := add(calldata, 32)
7 let success := staticcall(gas, walletAddress, cdStart, mload(calldata), cdStart, 32)
8 // Error Handling
9 }

Fig. 34. Call a function from another contract efficiently using inline assembly.

and it uses inline assembly as it is the most suitable way to retrieve why the performed call was
failed. Another common use case is to combine the switch instruction with the revert opcode to
handle complex errors.

Call other Contract. Similar to the proxy implementation class, inline assembly is also used to
perform efficient direct calls to other contracts. In the example of Figure 34 a static call verifies a
signature using the logic defined in another contract (i.e., IWalltet contract). First, line 6 retrieves
the pointer to the start of the input data (calldata), and then staticcall accepts the following
arguments: the remaining gas, the address of the targeted contract, the pointer to the input, the
length of the input, and again the pointer to the input where it will write the output. Other examples
implemented using this pattern include address verification and delegating transactions.

Optimizations for Cryptographic Primitives. Implementation of cryptographic primitives is one of
the primary operations practitioners try to optimize. To this end, they usually combine functionality
from other classes, such as deserialization, with hashing functions or arithmetic instructions to
efficiently implement cryptography algorithms. Figure 35 presents an example where given a hash
of a specific transaction scheme, a salt value, an address, and some additional transaction data to
be hashed; one can efficiently compute the hash of a transaction.

Handling Arbitrary Data. Inline assembly is used to handle arbitrary data, especially when
implementing generic libraries. One example of this use is a library that provides generic function
call logging by implementing a modifier that captures the function’s first and second parameters
and logs them in an event (c.f. Figure 36).

Fine-Grained Memory and Storage Control. Many inline assembly fragments contain only a few
lines that manipulate either the memory or the storage, using mload, mstore, sload, and sstore.
The goal of these fragments is to achieve fine-grained control over the memory. Typically, these

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 165. Publication date: October 2022.

165:22 Stefanos Chaliasos, Arthur Gervais, and Benjamin Livshits

bytes32 schemaHash = EIP712_SCHEMA_HASH;
...
assembly {
let memPtr := mload(64)
mstore(memPtr, schemaHash)
mstore(add(memPtr, 32), salt)
mstore(add(memPtr, 64), and(signerAddr, 0xf...))
mstore(add(memPtr, 96), dataHash)
result := keccak256(memPtr, 128)

}

Fig. 35. Optimizing cryptographic operations using
inline assembly.

modifier note {
bytes32 foo;
bytes32 bar;
assembly {
first_param := calldataload(4)
second_param := calldataload(36)

}
emit LogNote(msg.sig, msg.sender, foo, bar,

msg.value, msg.data);
}

Fig. 36. Modifier for enabling logging to generic func-
tion calls.

fragments are used as complementary to other inline assembly fragments. Nevertheless, this is
still an essential class of inline assembly usage because it supports other operations while also
providing control in the memory and the storage in a way that is not possible with plain Solidity.

Manual Inlining. A few fragments perform manual inlining using inline assembly, i.e., rather
than using a library that implements certain functionality, they manually copy and paste only the
assembly code into their code to reduce the gas costs. This class is mostly used for procedures from
the ‘String, Bytes, and Math Utils’ class.

Other use cases. We further discuss some patterns we observed in only a few fragments in
our corpus. One such use case is implementing timestamp-based locks using inline assembly
instructions. Moreover, another inline assembly use that was interesting was implementing very
specific functionality. For instance, one fragment creates a contract that can only be destroyed by
another specific contract. Another example is a safer re-implementation of the built-in ecrecover
function. One of the most intriguing fragments we studied was a highly optimized and convoluted
code used to efficiently create and delete multiple contracts. Specifically, this contract 15 was
introduced tomake gas-efficient flash loans. Finally, we also observed a few fragments that combined
multiple of the presented patterns to identify if a contract implements some specific interfaces.

Discussion. The results of our qualitative analysis suggest that developers use inline assembly for
various reasons, from performing optimizations to implementing procedures that cannot be written
in plain Solidity. One key difference between assembly fragments in library code and other smart
contracts is that the former focus not only on optimizations but primarily on providing functionality
that is not available to Solidity, whereas the latter mainly focuses on optimizations. While here
we presented ten classes of inline assembly patterns, we observed that many fragments perform
various operations, such as performing a contract call and then handle any possibly errors. Finally,
we also notice that the number of fragments in a contract is usually a matter of the developer’s
taste because, in several cases, two fragments separated by one or two lines of solidity code could
have been combined into a single inline assembly code block.

6 IMPLICATIONS AND DISCUSSION
We now discuss several implications of our work, and how our findings can serve as a basis for
future research endeavors.

15https://etherscan.io/address/0x00000000454a11ca3a574738c0aab442b62d5d45#code

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 165. Publication date: October 2022.

https://etherscan.io/address/0x00000000454a11ca3a574738c0aab442b62d5d45#code

A Study of Inline Assembly in Solidity Smart Contracts 165:23

Prevalence of inline assembly in Solidity. In our corpus, 23% of the analyzed deployed contracts
contain at least one inline assembly fragment, meaning that inline assembly is even more common
in Solidity than in a system-level programming language such as C (15.6% [Rigger et al. 2018]).
Furthermore, the trend of assembly usage has been upward since its introduction in late 2015.
Interestingly, programs compiled with later versions of the Solidity compiler typically include inline
assembly fragments more frequently than programs compiled with previous versions. We further
analyzed usage patterns of inline assembly (Sections 4.4 and 5), and we observed that developers
employ inline assembly for various reasons, from performing optimizations to using features not
available in Solidity. Hence, we conclude that inline assembly is an integral part of the Solidity
language, and its usage has become more and more popular.

Support for inline assembly. We believe that our results are essential to tool writers, language
designers, and compiler developers. Firstly, most of the tools working on Solidity source typically
provide limited support for inline assembly [Feist et al. 2019; Tikhomirov et al. 2018; Tsankov
et al. 2018]. To this end, our study (1) highlights the importance of inline assembly in Solidity
contracts, and (2) can guide tool developers in planning and prioritizing the implementation of
instructions. Notably, only 37 out of 85 instructions are used by at least 1% of the contracts, and by
implementing 43 instructions, more than 82% of the contracts that use inline assembly would be
supported. Additionally, this study could be helpful to language designers, as it reveals where plain
Solidity is inadequate to implement some functionality resulting in developers employing inline
assembly. For example, a built-in function to reason if an address is a contract is a long-waited
feature by smart contract developers. Finally, compiler writers could obtain feedback on which
instructions and combinations are frequently used, giving them insights on what optimizations
could benefit more programs.

Unnecessary use of inline assembly. In some cases, using inline assembly is inevitable because
it is the only way to implement some functionalities. Additionally, we identified some patterns
where developers employ inline assembly to perform some operations way more efficiently than
using Solidity (e.g., Call other Contract). Nevertheless, the use of inline assembly comes with its
disadvantages. Firstly, it bypasses several essential safety features and checks provided by the
Solidity language. For instance, since Solidity 0.8.0, adding two units cannot result in an overflow,
but this is not true if the addition is performed using inline assembly. Additionally, using inline
assembly could result in less efficient bytecode because some optimizations cannot be applied in the
presence of inline assembly fragments. As the Solidity compiler evolves and adds more efficient and
aggressive optimizations, some uses of inline assembly would become rendundant. For instance,
if the compiler optimises the code sufficiently, the Manual Inlining pattern appears superfluous.
Another potential category that may become obsolete is the Optimizations for Cryptographic
Primitives. Finally, as Solidity evolves, more functionalities become part of the languages, resulting
in more obsolete inline assembly uses. For instance, the chainid opcode has been available in
Solidity since version 0.8.0. Another example is the array slice function that was introduced in
Solidity 0.6.0.

Inline assembly alternatives. As already mentioned, inline assembly could thwart the correctness
of smart contracts or could even harm the efficiency of the generated bytecode. Another issue is
that code auditing, a cornerstone in the development lifecycle of most important smart contract
applications, becomes more complicated when inline assembly is present, as inline assembly code
is typically more convoluted than Solidity code. For these reasons, it is essential to create tools
for replacing inline assembly code with equivalent Solidity code. There is already a growing body
of work that focuses on getting rid of inline assembly in C programs [Corteggiani et al. 2018;

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 165. Publication date: October 2022.

165:24 Stefanos Chaliasos, Arthur Gervais, and Benjamin Livshits

Recoules et al. 2019] and replacing JavaScript’s eval [Jensen et al. 2012; Meawad et al. 2012], which
researchers can use as a starting point for building similar methodologies for inline assembly in
Solidity. Finally, the Solidity team intends to develop a standard library for the Solidity language
that will be distributed with the compiler. Parts of this library would be implemented in inline
assembly, as it is preferable to implement low-level functionality in inline assembly rather than
‘hide’ it in the compiler’s source code. Consequently, the goal is that client code would utilize
inline assembly less frequently because the standard library and other libraries would provide the
required functionality.

7 RELATEDWORK
Inline Assembly in C/C++. The closest study to our work is that conducted by Rigger et al. [2018]
for inline assembly in C programs. The authors quantitatively and qualitatively analyzed the use of
x86-64 inline assembly in 1,264 GitHub projects to mainly help developers of C-focused tools better
understand how inline assembly is used in practice. Some of their key findings are as follows: (1)
15.6% of C projects contain inline assembly fragments, (2) inline assembly fragments usually consist
of a single instruction, and more than 90% of the fragments contain less than ten instructions, (3)
the majority of the projects use the same subset of instructions. Our study analyzed more than three
orders of magnitude larger dataset. Inline assembly in Solidity is slightly more common than in C
(23% 16 vs. 15.6% 17), and fragments in Solidity contain more instructions than those in C (10.62 vs.
9.9). In a different spirit, Akshintala et al. [2019] measured instruction usage across the binaries
of 9,337 C/C++ Debian packages. Following these studies, Recoules et al. [2019] developed TINA, the
first automated and verification-friendly lifting technique turning inline assembly into semantically-
equivalent C code. Similarly, Corteggiani et al. [2018] lift GNU inline assembly to semantically
equivalent C code to verify mixed codes combining C and inline assembly. Furthermore, Recoules
et al. [2021] propose RUSTINA for formally checking inline assembly compliance, with the ability
to create patches and (optimization) refinements in some instances. Finally, beyond inline assembly
researchers have highlighted the role of other non-standardized C language features that may
reduce the ability of tools to analyze C code, such as linker scripts [Kell et al. 2016] and GCC
builtins [Rigger et al. 2019].

Eval and Other Dynamic Features. Over the past decade, many works have studied the use
and impact of eval and other dynamic features in various programming languages. Although eval
differs in many ways from inline assembly, these studies have the same goals as our work, i.e.,
to study the use of a language component that hampers the efficiency of analysis tools and may
introduce security risks.

Richards et al. [2010] performed the first study of the dynamic behaviour of JavaScript programs
on 100 popular websites. Their results highlighted the need to study dynamic features of JavaScript
further, and displayed the limitations of existing benchmarks that neglected specific language
constructs such as eval. In a subsequent study, Richards et al. [2011] provided the first large scale
study on JavaScript eval. Their dataset comprises of 10k popular websites and is analyzed through
an instrumented web browser to gather execution traces. The outcome of this study was that 82% of
the analyzed websites use eval for various purposes such as dynamic code loading, deserialization of
JSON data, and lightweight meta-programming. Notably, many usages of eval could automatically
be fixed by using more robust code [Jensen et al. 2012; Meawad et al. 2012]. In a recent study, Goel
et al. [2021] analysed the use of eval in 15401 R packages and compared the results with previous

16Percentage of deployed contracts using inline assembly.
17Percentage of C projects using inline assembly.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 165. Publication date: October 2022.

A Study of Inline Assembly in Solidity Smart Contracts 165:25

work that analyzed eval in JavaScript programs. The authors argue that eval use is widespread in R
programs, and is more pervasive and dangerous when compared to eval in JavaScript programs.

Empirical Studies on Solidity. Here we briefly present recent empirical studies on smart
contracts. Bartoletti and Pompianu [2017] performed the first empirical analysis of smart contracts
by manually analyzing the source code of 811 Solidity smart contracts obtained from Etherscan
and classified them into five categories: financial, notary, game, wallet, and library contracts.
Furthermore, they studied the distribution of transactions that interacted with the smart contracts
per category and investigated various designed patterns employed in Solidity smart contracts.
Similarly, we examined transaction data for contracts that contain inline assembly and compared
them to contracts that do not contain inline assembly in our study. In a different spirit, Zou et al.
[2019] conducted 20 semi-supervised interviews with Solidity developers and performed a survey
on 232 practitioners to highlight the challenges in developing smart contracts in Ethereum. They
identified five major fields that need improvement: security, debugging, limitations of Solidity,
limitations of EVM, and Gas optimizations.

Analyzing the source code of smart contracts is a promising avenue to understand the properties
of deployed smart contracts better. Similar to our work, numerous studies have crawled etherscan to
get the source code of smart contracts and analyze them [Hegedűs 2019; Mariano et al. 2020; Pinna
et al. 2019; Tonelli et al. 2018]. Tonelli et al. [2018] defined various metrics similar to those of C&K
[Chidamber and Kemerer 1994] metrics in the OO world and compared their distributions with the
metrics extracted from traditional software projects on more than 12 thousand smart contracts.
Their results show that smart contracts metrics are typically more restricted than the corresponding
metrics in traditional software systems. Hegedűs [2019] also defined and implemented C&K style
software metrics and analyzed their distributions on 40 thousand smart contracts. In addition to
complexity metrics (also studied by Tonelli et al. [2018]), they also studied coupling and inheritance
metrics. Beyond source code characteristics, Pinna et al. [2019] performed a comprehensive empirical
study of smart contracts deployed on Ethereum, studying on-chain data such as transaction numbers.
In contrast to prior works, our study is performed on a much bigger dataset (millions instead of
thousands of smart contracts). Additionally, we quantitative and qualitative study both on-chain
data and smart contracts source code.
Finally, Mariano et al. [2020] studied syntactic and semantic characteristics of loops used in

over 20, 000 Solidity contracts to inform future research on program analysis for smart contracts.
Similarly, we perform the first study on inline assembly usage in smart contracts to help researchers
build appropriate techniques or adapt the existing ones to analyze Solidity inline-assembly.

8 CONCLUSION
We presented the first empirical study of inline assembly usage in a blockchain environment. Inline
assembly is frequently used and has a variety of applications in Solidity smart contracts. Additionally,
its utilisation continues to rise over time, and contracts with a broad range of characteristics
employ it. The functionality enabled by inline assembly is essential for practitioners. Our analysis
observed that libraries heavily depend on inline assembly, whereas independent contracts make
use of inline assembly to optimise performance. Furthermore, inline assembly fragments typically
combine different instructions and are larger than those seen in C. Notably, only 48 out of the 85
available instructions are used by more than 1% of the contracts that employ inline assembly. These
observations go counter to the underlying intuition of static analysis techniques neglecting inline
assembly.

We discussed several implications of our study’s findings. Firstly, we emphasised the importance
of improved support for inline assembly. The findings of this study can be used by researchers and
Solidity tool developers to prioritise the implementation of specific instructions that will enable

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 165. Publication date: October 2022.

165:26 Stefanos Chaliasos, Arthur Gervais, and Benjamin Livshits

their techniques to handle the majority of inline assembly fragments. Furthermore, Solidity might
be extended via built-in functions to give developers certain functionality that is now absent (e.g.,
a function to return if an address is a contract). Finally, we believe that researchers will build upon
our work’s finding to develop approaches akin to C’s inline assembly and JavaScript’s eval for
lifting inline assembly.

ACKNOWLEDGMENTS
Wewould like to thank the anonymous OOPSLA reviewers andDiomidis Spinellis for their insightful
feedack on previous versions of the paper. We also want to thank Zhipeng Wang for his useful
comments on our artifact. Finally, we want to thank Christian Reitwiessner for the insightful
discussion about inline assembly’s role in the Solidity ecosystem and, in particular, its usage for
implementing a standard library.

REFERENCES
Amogh Akshintala, Bhushan Jain, Chia-Che Tsai, Michael Ferdman, and Donald E. Porter. 2019. X86-64 Instruction Usage

among C/C++ Applications. In Proceedings of the 12th ACM International Conference on Systems and Storage (Haifa, Israel)
(SYSTOR ’19). Association for ComputingMachinery, New York, NY, USA, 68–79. https://doi.org/10.1145/3319647.3325833

Massimo Bartoletti and Livio Pompianu. 2017. An empirical analysis of smart contracts: platforms, applications, and design
patterns. In International conference on financial cryptography and data security. Springer, 494–509.

Lexi Brent, Neville Grech, Sifis Lagouvardos, Bernhard Scholz, and Yannis Smaragdakis. 2020. Ethainter: A smart contract
security analyzer for composite vulnerabilities. In Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation. 454–469.

Lexi Brent, Anton Jurisevic, Michael Kong, Eric Liu, François Gauthier, Vincent Gramoli, Ralph Holz, and Bernhard Scholz.
2018. Vandal: A Scalable Security Analysis Framework for Smart Contracts. ArXiv abs/1809.03981 (2018).

Stefanos Chaliasos, Arthur Gervais, and Benjamin Livshits. 2022. Artifact: A Study of Inline Assembly in Solidity Smart
Contracts. https://doi.org/10.5281/zenodo.7071281

Stefanos Chaliasos, Thodoris Sotiropoulos, Georgios-Petros Drosos, Charalambos Mitropoulos, Dimitris Mitropoulos, and
Diomidis Spinellis. 2021. Well-Typed Programs Can Go Wrong: A Study of Typing-Related Bugs in JVM Compilers. Proc.
ACM Program. Lang. 5, OOPSLA, Article 123 (oct 2021), 30 pages. https://doi.org/10.1145/3485500

Shyam R Chidamber and Chris F Kemerer. 1994. A metrics suite for object oriented design. IEEE Transactions on software
engineering 20, 6 (1994), 476–493.

Nassim Corteggiani, Giovanni Camurati, and Aurélien Francillon. 2018. Inception: System-Wide Security Testing of Real-
World Embedded Systems Software. In Proceedings of the 27th USENIX Conference on Security Symposium (Baltimore, MD,
USA) (SEC’18). USENIX Association, USA, 309–326.

Thomas Durieux, João F Ferreira, Rui Abreu, and Pedro Cruz. 2020. Empirical review of automated analysis tools on 47,587
ethereum smart contracts. In Proceedings of the ACM/IEEE 42nd International conference on software engineering. 530–541.

Josselin Feist, Gustavo Grieco, and Alex Groce. 2019. Slither: a static analysis framework for smart contracts. In 2019
IEEE/ACM 2nd International Workshop on Emerging Trends in Software Engineering for Blockchain (WETSEB). IEEE, 8–15.

Robert Feldt and Ana Magazinius. 2010. Validity threats in empirical software engineering research-an initial survey.. In
Seke. 374–379.

Aviral Goel, Pierre Donat-Bouillud, Filip Křikava, Christoph M. Kirsch, and Jan Vitek. 2021. What We Eval in the Shadows:
A Large-Scale Study of Eval in R Programs. Proc. ACM Program. Lang. 5, OOPSLA, Article 125 (oct 2021), 23 pages.
https://doi.org/10.1145/3485502

Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard Scholz, and Yannis Smaragdakis. 2018. Madmax:
Surviving out-of-gas conditions in ethereum smart contracts. Proceedings of the ACM on Programming Languages 2,
OOPSLA (2018), 1–27.

Péter Hegedűs. 2019. Towards analyzing the complexity landscape of solidity based ethereum smart contracts. Technologies
7, 1 (2019), 6.

Simon Holm Jensen, Peter A. Jonsson, and Anders Møller. 2012. Remedying the Eval That Men Do. In Proceedings of the
2012 International Symposium on Software Testing and Analysis (Minneapolis, MN, USA) (ISSTA 2012). Association for
Computing Machinery, New York, NY, USA, 34–44. https://doi.org/10.1145/2338965.2336758

Stephen Kell, Dominic P. Mulligan, and Peter Sewell. 2016. The Missing Link: Explaining ELF Static Linking, Semantically.
In Proceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages,
and Applications (Amsterdam, Netherlands) (OOPSLA 2016). Association for Computing Machinery, New York, NY, USA,

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 165. Publication date: October 2022.

https://doi.org/10.1145/3319647.3325833
https://doi.org/10.5281/zenodo.7071281
https://doi.org/10.1145/3485500
https://doi.org/10.1145/3485502
https://doi.org/10.1145/2338965.2336758

A Study of Inline Assembly in Solidity Smart Contracts 165:27

607–623. https://doi.org/10.1145/2983990.2983996
Benjamin Mariano, Yanju Chen, Yu Feng, Shuvendu K Lahiri, and Isil Dillig. 2020. Demystifying loops in smart contracts. In

2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, 262–274.
Fadi Meawad, Gregor Richards, Floréal Morandat, and Jan Vitek. 2012. Eval Begone! Semi-Automated Removal of Eval

from Javascript Programs. In Proceedings of the ACM International Conference on Object Oriented Programming Systems
Languages and Applications (Tucson, Arizona, USA) (OOPSLA ’12). Association for Computing Machinery, New York, NY,
USA, 607–620. https://doi.org/10.1145/2384616.2384660

Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/bitcoin.pdf.
Terence J. Parr and Russell W. Quong. 1995. ANTLR: A predicated-LL (k) parser generator. Software: Practice and Experience

25, 7 (1995), 789–810.
Andrea Pinna, Simona Ibba, Gavina Baralla, Roberto Tonelli, and Michele Marchesi. 2019. A massive analysis of ethereum

smart contracts empirical study and code metrics. IEEE Access 7 (2019), 78194–78213.
Frédéric Recoules, Sébastien Bardin, Richard Bonichon, Matthieu Lemerre, Laurent Mounier, and Marie-Laure Potet.

2021. Interface Compliance of Inline Assembly: Automatically Check, Patch and Refine. IEEE Press, 1236–1247. https:
//doi.org/10.1109/ICSE43902.2021.00113

Frédéric Recoules, Sébastien Bardin, Richard Bonichon, Laurent Mounier, and Marie-Laure Potet. 2019. Get Rid of Inline As-
sembly through Verification-Oriented Lifting. In Proceedings of the 34th IEEE/ACM International Conference on Automated
Software Engineering (San Diego, California) (ASE ’19). IEEE Press, 577–589. https://doi.org/10.1109/ASE.2019.00060

Gregor Richards, Christian Hammer, Brian Burg, and Jan Vitek. 2011. The Eval That Men Do. In ECOOP 2011 – Object-Oriented
Programming, Mira Mezini (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 52–78.

Gregor Richards, Sylvain Lebresne, Brian Burg, and Jan Vitek. 2010. An Analysis of the Dynamic Behavior of JavaScript
Programs. In Proceedings of the 31st ACM SIGPLAN Conference on Programming Language Design and Implementation
(Toronto, Ontario, Canada) (PLDI ’10). Association for Computing Machinery, New York, NY, USA, 1–12. https:
//doi.org/10.1145/1806596.1806598

Manuel Rigger, Stefan Marr, Bram Adams, and Hanspeter Mössenböck. 2019. Understanding GCC Builtins to Develop Better
Tools. In Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (Tallinn, Estonia) (ESEC/FSE 2019). Association for Computing Machinery, New
York, NY, USA, 74–85. https://doi.org/10.1145/3338906.3338907

Manuel Rigger, Stefan Marr, Stephen Kell, David Leopoldseder, and Hanspeter Mössenböck. 2018. An Analysis of X86-64
Inline Assembly in C Programs. In Proceedings of the 14th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments (Williamsburg, VA, USA) (VEE ’18). Association for Computing Machinery, New York, NY, USA,
84–99. https://doi.org/10.1145/3186411.3186418

Solidity. 2022. Solidity Inline Assembly Documentation. https://docs.soliditylang.org/en/latest/assembly.html.
Nick Szabo. 1997. Formalizing and securing relationships on public networks. First monday (1997).
Sergei Tikhomirov, Ekaterina Voskresenskaya, Ivan Ivanitskiy, Ramil Takhaviev, Evgeny Marchenko, and Yaroslav Alexan-

drov. 2018. Smartcheck: Static analysis of ethereum smart contracts. In Proceedings of the 1st International Workshop on
Emerging Trends in Software Engineering for Blockchain. 9–16.

Roberto Tonelli, Giuseppe Destefanis, Michele Marchesi, and Marco Ortu. 2018. Smart contracts software metrics: a first
study. arXiv preprint arXiv:1802.01517 (2018).

Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian Buenzli, and Martin Vechev. 2018. Securify:
Practical security analysis of smart contracts. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. 67–82.

Gavin Wood. 2022. Ethereum: A secure decentralised generalised transaction ledger. (2022).
Weiqin Zou, David Lo, Pavneet Singh Kochhar, Xuan-Bach Dinh Le, Xin Xia, Yang Feng, Zhenyu Chen, and Baowen Xu.

2019. Smart contract development: Challenges and opportunities. IEEE Transactions on Software Engineering 47, 10
(2019), 2084–2106.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 165. Publication date: October 2022.

https://doi.org/10.1145/2983990.2983996
https://doi.org/10.1145/2384616.2384660
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1109/ICSE43902.2021.00113
https://doi.org/10.1109/ICSE43902.2021.00113
https://doi.org/10.1109/ASE.2019.00060
https://doi.org/10.1145/1806596.1806598
https://doi.org/10.1145/1806596.1806598
https://doi.org/10.1145/3338906.3338907
https://doi.org/10.1145/3186411.3186418
https://docs.soliditylang.org/en/latest/assembly.html

	Abstract
	1 Introduction
	2 Background
	2.1 Ethereum, EVM and Solidity
	2.2 Inline Assembly in Solidity

	3 Methodology
	3.1 Data Collection
	3.2 Quantitative Analysis
	3.3 Qualitative Analysis
	3.4 Threats to Validity

	4 Quantitatively Study Inline Assembly on Solidity Smart Contracts
	4.1 RQ1: Measuring Inline Assembly
	4.2 RQ2: Smart Contract Characteristics
	4.3 RQ3: Evolution of Inline Assembly
	4.4 RQ4: A Taxonomy of Inline Assembly

	5 RQ5: Usage of Inline Assembly
	6 Implications and Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

